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SUMMARY

Wake development behind circular cylinders at Reynolds numbers from

40 to I0,000 was investigated in a low-speed wind tunnel. Standard hot-

wire techniques were used to study the velocity fluctuations.

The Reynolds number range of periodic vortex shedding is divided

into two distinct subranges. At R = 40 to IS0, called the stable range,

regular vortex streets are formed and no turbulent motion is developed.

The range R = iS0 to 300 is a transition range to a regime called the

irregular range, in which turbulent velocity fluctuations accompany the

periodic formation of vortices. The turbulence is initiated by laminar-

turbulent transition in the free layers which spring from the separation

points on the cylinder. This transition first occurs in the range
R = 150 to 300.

Spectrum and statistical measurements were made to study the velocity

fluctuations. In the stable range the vortices decay by viscous diffusion.

In the irregular range the diffusion is turbulent and the wake becomes

fully turbulent in 40 to 50 diameters downstream.

It was found that in the stable range the vortex street has a periodic
spanwise structure.

The dependence of shedding frequency on velocity was successfully
used to measure flow velocity.

Measurements in the wake of a ring showed that an annular vortex

street is developed.

INTRODUCTION

It is always difficult to determine precisely the date and author

of a discovery or idea. This seems to be the case with the periodic

phenomena associated with flow about a cylinder. Although the effect
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of wind in producin_ vibrations in wires (aeolian tones) had been known
for sometime, the first experimental observations are due to Strouhal
(reference i) who showedthat the frequency depends on the relative air
velocity and not the elastic properties of the wires. Soonafter,
Rayleigh (1879, references 2 and 3) performed similar experiments. His
formulation of the Reynolds numberdependencedemonstrates his remarkable
insight into the problem.

These earliest observations were concerned with the relations
between vibration frequency and wind velocity. The periodic nature of
the wake was discovered later, although Leonardo da Vinci in the fifteenth
century had already drawn somerather accurate sketches of the vortex
formation in the flow behind bluff bodies (reference 4). However,
Leonardo's drawings show a symmetric row of vortices in the wake. The
first modernpictures showing the alternating arrangement of vortices
in the wake were published by Ahlborn in 1902 (reference 5); his visual-

ization techniques have been used extensively since then. The importance

of this phenomenon, now known as the K_rm_ vortex street, was pointed

out by Benard (1908, reference 6).

f •
In 1911 Karman gave his famous theory of the vortex street (refer-

ence 7), stimulating a widespread and lasting series of investigations

of the subject. For the most part these concerned themselves with
l •

experimental comparisons of real vortex streets with KArman's idealized

model, calculations on the effects of various disturbances and configura-

tions, and so on. It can hardly be said that any fundamental advance in

the problem has been made since K_rm_'s stability papers, in which he

also clearly outlined the nature of the phenomenon and the unsolved

problems. Outstanding perhaps is the problem of the periodic vortex-

shedding mechanism, for which there is yet no suitable theoretical

treatment.

However, the results of the many vortex-street studies, especially

the experimental ones, are very useful for further progress in the prob-

lem. Attention should be drawn to the work of Fage and his associates

(1927, references 8 to i0), whose experimental investigations were con-

ducted at Reynolds numbers well above the ranges examined by most other

investigators. Their measurements in the wake close behind a cylinder

provide much useful information about the nature of the shedding. More

recently Kovasznay (1949, reference ii) has conducted a hot-wire inves-

tigation of the stable vortex street (low Reynolds numbers), to which

frequent reference will be made.

Vortex-street patterns which are stable and well-defined for long

distances downstream actually occur in only a small range of cylinder

Reynolds numbers, from about R = 40 to 150, and it is to this range

that most of the attention has been given. On the other hand, as is

well-known, periodic vortex shedding also occurs at higher Reynolds
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numbers, up to 105 or more, but the free vortices which movedownstream
are quickly obliterated, by turbulent diffusion, and a turbulent wake
is established.

The present interest in the vortex street is due to somequestions
arising from the study of turbulent flow behind cylinders and grids.
Such studies are usually madeat Reynolds numbersfor which periodic
vortex shedding from the cylinders or grid rods might occur. However,
the measurementsare always taken downstreamfar enough to insure that
the periodic velocity fluctuations are obliterated and the flow is com-
pletely turbulent. There are several important consequencesof this
limitation.

First, the energy of the velocity fluctuations is quite low compared
with the energy near the cylinder, and especially low comparedwith the
dissipation represented by the form drag. In attaining the developed
downstreamstate there is evidently not only a rapid redistribution of
energy amongthe spectral componentsbut also a large dissipation.
Second, the theories which describe these downstreamstages do not relate
the flow to the initial conditions except very loosely in terms of
dimensionless parameters, and it is usually necessary to determine an
origin empirically (e.g., mixing-length theory or similarity theories).

On the other hand, there is evidence that somefeatures are perma-
nent, so that they must be determined near the beginning of the motion.
One such feature is the low-wave-numberend of the spectrum which (in
the theory of homogeneous turbulence) is invariant.

Another is the random element. It has been pointed out by Dryden

(references 12 and 13) that in the early stages of the decay of isotropic

turbulence behind grids the bulk of the turbulent energy lies in a

spectral range which is well approximated by the simple function

A characteristic of certain random processes. Liepmann (refer-
1 + B2n 2'

ence 14) has suggested that such a random process may be found in the

shedding of vortices fram the grids.

In short, there has been no description, other than very qualita-

tive, of the downstream development of wakes which, over a wide range

of Reynolds number, exhibit a definite periodicity at the beginning.

The measurements reported here were undertaken to help bridge this gap.

The main results show the downstream development of the wake, in

terms of energy, spectrum, and statistical properties. This develop-

ment is quite different in two Reynolds number ranges, the lower one

extending from about 40 to 150 and the upper, from 300 to 104 (and prob-

ably 105), with a transition range between. The lower range is the
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region of the classic vortex street, stable and regular for a long dis-
tance downstream. The fluctuating energy of the flow has a discrete
spectrum and simply decays downstreamwithout transfer of energy to
other frequencies. Irregular fluctuations are not developed. In the
upper range there is still a predominant (shedding) frequency in the
velocity fluctuations near the cylinder, and most of the emergy is
concentrated at this frequency; however, someirregularity is already
developed, and this corresponds to a continuous spectral distribution
of someof the energy. Downstream,the discrete energy, at the shedding
frequency, is quickly dissipated or transferred to other frequencies,
so that by 50 diameters the wake is completely turbulent, and the energy
spectrum of the velocity fluctuations approaches that of isotropie
turbulence.

All other features of the periodic shedding and wake phenomenamay
be classified as belonging to one or the other of the two ranges. This
viewpoint allows somesystematization in the study of wake development.

In particular, it is felt that the possibilities of the vortex
street are by no meansexhausted. A study of the interaction of periodic
fluctuations with a turbulent field seemsto be a fruitful approach to
the turbulence problem itself. It is planned to continue the present
work along these lines.

From a more immediately practical viewpoint an understanding of the
flow close to a bluff cylinder is important in at least two problems,
namely, structural vibrations in memberswhich themselves shed vortices
and structural buffeting experienced by membersplaced in the wakes of
bluff bodies. Manyof these are most appropriately treated by the statis-
tical methods developed in the theories of turbulence and other random
processes (reference IS). These methods are easily extended to include
the mixed turbulent-periodic phenomenaassociated with problems such as
the two mentioned above.

The research was conducted at GALCITunder the sponsorship and with
the financial assistance of the National Advisory Committee for Aeronautics,
as part of a long-range turbulence study directed by Dr. H. W. Liepmann.
His advice and interest throughout the investigation, as well as helpful
discussions with Dr. Paco Lagerstrom, are gratefully acknowledged.

SYMBOLS

constants

major and minor axis, respectively, of correlation ellipse
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CD

Cop

D

d

d'

ds

E

EI,E 2

F

Fl(n) ,F2 (n)

Fr(n)

 (nA)

h

h'

h*

K

k

L

L z

Z

Mk

drag coefficient

form drag coefficient

outside diameter of ring

cylinder dimension

distance between free vortex layers

diameter of ring-supporting wire

wake energy

components of wake energy due to periodic fluctuations

dimensionless frequency (nl-@)

energy spectrum

energy spectra of discrete energy

continuous energy spectrum

output of wave analyzer at setting nA

lateral spacing of vortices

initial lateral spacing of vortices

lateral spacing between positions of u'm

constant

integer

scale

scale corresponding to Rz

downstream spacing of vortices

moment_ of order k, of probability density
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Nk

nI

n 2 = 2n 1

q

q(r)

q* = q(r*)

R

R(n)

Rh

Rt(T)

Rz

r

r _

S

S I

T

Ta

t

U

Uo

U*

"absolute" moment of probability density

shedding frequency

probability distribution function

probability density

area under response characteristic

tangential velocity in vortex

Reynolds number

response characteristic of wave analyzer

Reynolds number based on ring diameter

time correlation function

space correlation function

distance from vortex center

radius of vortex

number, based on cylinder dimension (nld/Uo)Strouhal

Strouhal number_ based on distance between f_ee vortex

layers (nld'/Uo)

time scale

time of averaging

time

local mean velocity in x-direction

mean stream velocity

mean velocity at vortex center
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U,V,W

Ul,U 2

u r

U' m

V

x,y,z

F

5(n)

£

n

v

0

0

T

O3

components of velocity fluctuation

periodic velocity fluctuations, at frequencies nI and n 2

random velocity fluctuation

peak root-mean-square value of velocity fluctuation

velocity of vortex relative to the fluid

refe_nce axes and distance from center of cylinder

flatness factor of probability distribution _4/M2 2)

strength (circulation) of a vortex

Dirac delta function

positive number

distance between two points, measured in z-direction

dimensionless frequency (_o n)

dimensionless "time" in life of vortex _-_

dummy variable

kinematic viscosity

a value of u

density

skewness of probabilitydistribution (M3/M23/2)

time interval

half band width of wave analyzer
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GENERALCONSIDERATIONS

Except for the parameters directly related to the shedding frequency,
the quantities measuredwere essentially those that are standard in
turbulence investigations (cf. references 12 to 14). These are briefly
reviewed below with somemodifications required to study the periodic
features.

Reference Axes

The origin of axes is taken at the center of the cylinder (fig. i);
x is measureddownstreamin the direction of the free-stream velocity,
z is measuredalong the axis of the cylinder, which is perpendicular
to the free-stream velocity, and y is measuredin the direction per-
pendicular to (x,y); that is, y = 0 is the center plane of the wake.
The free-stream velocity is Uo and the local meanvelocity in the
x-direction is U. The fluctuating velocities in the x, y, and z
directions are uj v, and w, respectively. The flow is considered
to be two-dimensional; that is, meanvalues are the samein all planes
z = Constant.

Shedding Frequency

The sheddingI frequency is usually expressed in terms of the dimen-
sionless Strouhal number S = nld/U o, where nI is the shedding fre-
quency (from one side of the cylinder), d is the cylinder diameter,
and Uo is the free-stream velocity. The Strouhal number S may depend
on Reynolds number, geometry, free-stream turbulence level, cylinder
roughness, and so forth. The principal geometrical parameter is the
cylinder shape (for other than circular cylinders, d is an appropriate
dimension). However, cylinder-tunnel configurations must be taken into
account, for example, blockage and end effects. In water-channel experi-
ments surface effects mayhave an influence. Usually the geometrical
configuration is fixed, and then S is presented as a function of
Reynolds number R.

Instead of Strouhal number it is sometimesconvenient to use the
dimensionless parameter F = nld21v , where v is the kinematic viscosity.

IThe term "shedding" is used throughout this report, for convenience;
it is not meant to imply anything about the mechanismof the formation of
free vortices.
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Eriergy

The experiments to be described are concerned mainly with the
velocity fluctuation in the wake, and especially with the corresponding
energy.

The energy of the velocity fluctuation at a point in the fluid is

1-%o(u2+ v2 + w2) per unit volume where (u,v,w) is the fluctuating

velocity and the bar denotes an averaging (see the section "Distribution
Functions"). In these experiments only the component u was measured,
and the term "energy" is used to denote the energy in that component
only.

The energy intensity is defined as (u/Uo)2. Since the meanflow
is two-dimensional the intensity does not vary in the z-direction. At
any downstreamposition in the wake it varies in the y-directlon, norm_
to the wake. The integral of the intensity over a plane normal to the
free stream (per unit span) is called the wake energy E:

(1)

The velocity fluctuation in the wake of a shedding cylinder displays

a predominant frequency (as well as harmonics) which is the shedding

frequency. However, except in a small Reynolds number range, the fluctua-

tion has random irregularities "superimposed" on it; that is, it is not

purely periodic, in the mathematical sense. However, it is convenient

to speak of the "periodic" and "random" or turbulent parts of the

fluctuation. 2 The energy may be written

u2 2 u22= Ur2 + Ul + (2)

where Ur 2 is that portion of the energy contributed by the random

(turbulent) fluctuation, Ul2 is contributed by the periodic fluctua-

--r-

tion at the shedding frequency nl, and u22 corresponds to twice the

shedding frequency n2 = 2n 1. (The center of the wake feels the

2A turbulent fluctuation is an irregular variation, with respect to

time, which is characterized in particular by its randomness and absence
of periodicity (cf. reference 13, p. 9)-
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influence of vortices from both sides and n2 is prominent there, at
least near the "beginning" of the wake. Higher harmonics are found to
be negligible. )

Equation (2) is a kind of spectral resolution, in which Ul2 and

u22 are the energies at the specific frequencies nI and n2. This
type of resolution is called a discrete, or line, spectrum. But Ur2
is not a discrete spectral componentfor it is the energy in the turbu-
lent part of the fluctuation and contains "all" frequencies. It has a
continuous frequency distribution of energy, for which a slightly dif-
ferent definition of spectrum is appropriate. This is postponed until
the following section.

Corresponding to equation (2), an equation maybe written for the
wake energy E and its turbulent and periodic components:

E = Er + E1 + E2 (3)

Of particular interest will be the fraction of discrete energy
(E1 + E2)IE at various stages of wake development.

Correlation Functions; Spectrum

Definitions.- The time correlation function of the fluctuation u(t)

is defined by

whe re

Rt(T ) = u(t)u(t__ + _) (4)

u2

T is a time interval. The time scale is then defined by

T = Rt dT (5)

The Fourier transform of Rt defines another function

F(n) = 4 Rt(T ) cos 2x nx dT (6)
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Then, also

For

OO

Rt(_)= F(n) cos 2_ n; dr

T = 0, equations (4) and (7) give

(7)

OO

_(0) =_ ;(n)_:l (8)

where F(n) is defined as the energy spectrum; that is, F(n) dn is the

fraction of the energy in the frequency interval n to n + dn. It is

the fraction of energy "per unit frequency," as contrasted with the dis-

crete energy spectrum discussed in the section "Energy."

In studies of isotropic turbulence, at Reynolds numbers corre-

sponding to those in the present experiments, it is found that the

energy spectrum is well represented by the form

F(n) - A (9)
1 + B2n 2

or, what amounts to the same thing, that the correlation function is of
the form

Rt(T) = e-K_ (i0)

If the normalizing factor K = Uo/L is used in equation (i0), L being

a characteristic length, then equation (6) gives

UoF(n) 4

L l+ 4_:2(L2n2/Uo 2)

(Zia)

which may be conveniently written in terms of the dimensionless parameters

and

= UoF(n)/L (12a)

L

B = _OO n (igb)
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Then

4
= (llb)
i + (_)_

It is clear from equations (5) and (i0) that L is a length scale

related to the time scale by

L = UoT (13)

Equation (lib) is used as a convenient reference curve to compare

the measurements reported below.

Periodic functions.- The energy spectrum F(n) is particularly

well suited to turbulent fluctuations, for which the energy is con-

tinuously distributed over the frequencies. For periodic fluctuations

the discrete, or line, spectrum is more appropriate, but in the present

"mixed" case it is convenient to write the discrete energy, also, in

terms of F(n). This may be done by using the Dirac delta function 5(n).

Thus the energy at the shedding frequency nI is

UlZ = UlZ _(n - nl) _ (I_)

that is,

Fl(n) = 5(n - nl) (15)

Then the mixed turbulent-periodic fluctuations in the wake of a shedding

cylinder are considered to have an energy spectrum which is made up of

continuous and discrete parts (cf. equation (2) and appendix A):

F(n) dn = _-2 Fr(n ) dn + u12 Fl(n ) dn +

_oo

u_2 Jo F2(n)_ (16)

that is,

F(n) : Ur---_2__Fr(n) + Ul---_2__5(n - nl) + _u22 5(n - n2)

u 2 u2 u 2
(17)
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Space correlation function_ phase relations.- The correlation func-
tion defined in equation (4) describes the time correlation. Another

correlation function which is useful in the present study is one which

relates the velocity fluctuations at two points in the wake, situated

on a line parallel to the cylinder. This is defined by

where

scale is

Rz(_ ) : u(z,t)u(z__ + _,t) (18)

u 2

is the distance between the two points. The corresponding

nz = Rz d (19)

The function Rz should be particularly suited to studying turbulent

development. Close to the cylinder it should reflect the regularity

connected with the periodic shedding, especially in a regular, stable

vortex street, in which there are no turbulent fluctuations. When there

are turbulent fluctuations and, especially, far downstream where there

is no more evidence of periodicity, R z should be typical of a turbulent

fluid; that is, the correlation should be small for large values of _.

The function Rz may be obtained by standard techniques applied to

the two signals u(z,t) and u(z + _,t). One well-known visual method

is to apply the signals to the vertical and horizontal plates, respec-

tively, of an oscilloscope and to observe the resulting "correlation

figures" (or ellipses) on the screen (reference 16). If the signals

u(t) are turbulent fluctuations then the light spot moves irregularly

on the screen, forming a light patch which is elliptic in shape. The

correlation function is given by

a2 _ b 2

Rz a2 + b2 (ZO)

where a and b are the major and minor axes of the ellipse.

If u(z,t) is a periodic function, in both time and space, then

the correlation figure is an elliptical loop (Lissajous figure) whose

major and minor axes again give R z according to equation (20). Such

a case would exist if the wake had a spanwise periodic structure. Then

Rz(_) would be periodic. A special case of this is Rz([ ) = l, as would

be expected in a vortex street, provided the vortex fil_ments are straight
and parallel to the cylinder and do not "wobble."
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Distribution Functions

Random functions.- The probability density p(_) of a randumfunc-

tion ur(t ) is defined as the probability of finding ur in the interval

(_,_ + d_). It may be found by taking the average of observations made

on a large number (ensemble) of samples of Ur(t), all these observations

being made at the same time t. This is called an ensemble average. If

Ur(t ) is a stationary process, as in the present case, then appeal is

made to the ergodic hypothesis and the ensemble average is replaced by

the time average, obtained by making a large number of observations on

a single sample of Ur(t ). The probability density p(_) is the number

of times that u r is found in (_,_ + dE) divided by the total number of

observations made. In practice, time averages are more convenient than

ensemble averages. The averaging time Ta must be large enough so that

a statistically significant number of observations are made. This imposes

no hardship; it is sufficient that Ta be large compared with the time

scale T. If necessary, the error can be computed.

Experimentally,

below:

u

p(_) may be determined by the principle illustrated

n

5-- t i

~ 1 (21)
Ta

ti = A_ (22)

IdUr/dtl

The most elementary application of this principle is a graphical one

using a photographic trace of ur(t ). More conveniently, electronic

counting apparatus is employed (see the section "Statistical Analyzer").

The statistics of ur(t ) are usually described in terms of the

moments of p(_) and certain functions derived from the moments. The
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momentof order k is defined as

OO
Mk = _kp(_) d_

OO

Another useful, definition is

(23)

Nk = Z_ l_k P(_) d_

where Nk is equal to M k for even values of k. If p(_) is

symmetrical, then Mk is 0 for odd values of k but Nk is not.

OO
From the definition of p(_) it follows that M0 = p(_) d_ = i;

CO

will be normalized_ by requiring that M2 = 1/2, that is, the mean-

square value Ur2 = 1/2.

Three useful functions derived from the moments are

N21/2 ½1/2
c : :

N 1 N1

Skewness
M

a : _ (26)

Flatness
M4

= (27)

Periodic functions.- The above definitions may be extended to the

case of a periodic function ul(t ). The probability density can be

completely determined from a single wave length of ul(t); that is, it

is sufficient to take T a equal to the period. This complete a priori

information is a basic difference between periodic and random functlons.3

3For a periodic function the ergodic principle may not be invoked;

the ensemble average and the time average are not the same (unless the

members of the ensemble have random phase differences). It is the time

average that is computed here, for comparison with the experimental

results, which are also time averages.
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If ul(t ) is measuredexperimentally then ti(_ ) in equation (21)
can also be measured. If ul(t ) is given in analytic form then ti(_ )
maybe calculated from equation (22). Thus the distribution densities
for simple wave shapes are easily calculated. Table I gives the prob-
ability densities and momentsfor the triangular wave, sine wave, and
square wave. Also included is the Gaussian probability density, which
is a standard reference for randomfunctions.

The momentsof the probability densities of these wave shapes are
shownin figure 2. The momentsfor the randomfunction increase much
faster than those for the periodic functions. This results from the
fact that the maximumvalues of a periodic function are fixed by its
amplitude, while for a randomfunction all values are possible.

The probability density of a function which is partly periodic and
partly random is expected to display the transition from one type to the
other. The tendency toward the randomprobability density should be
strong. For instance, randomfluctuations in the amplitude of a sine
wave result in a large increase in the higher moments. It is interesting
to study the relation between probability functions and spectra_ partic-
ularly the case where most of the energy is discrete but the fluctua-
tion amplitude is random.

EXPERIMENTALDATA

Wind Tunnel

The experiments were all madein the GALCIT20- by 20-inch low-
turbulence tunnel (fig. i). Th_ turbulence level is about 0.03 percent.
The wind velocity maybe varied from about 50 centimeters per second
(I mph) to 1200 centimeters per second (25 mph).

Cylinders

The cylinders used in the experiments varied in diameter from
0.0235 to 0.635 centimeter. Music wire or drill rod was used. The
diameter tolerances are about 0.0002 centimeter. The cylinders spanned
the tunnel so that the length in all cases was 50 centimeters (20 in.);
the cylinders passed through the walls and were fastened outside the
tunnel.
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Rings

Somestudies were madeof the flow behind rings. These were made
up of wire. Each ring was supported in the tunnel by three thin support
wires, attached to the ring circumference at 120° intervals. Table II
gives the dimensions of the rings used (where d is the wire diameter,
D, the ring diameter, and ds, the diameter of the support wire).

Velocity Measurements

Velocities higher than about 400 centimeters per second were
measuredwith a pitot tube, calibrated against a standard. The pres-
sures were read on a precision manometerto an accuracy of about
0.002 centimeter of alcohol. Velocities lower than 400 centimeters per
second were determined from the shedding frequency of a reference cylinder
(0.635 cm), as explained in the section "Use of Shedding Frequency for
Velocity Measurements."

Fluctuating velocities were measuredwith a hot-wire anemometer
(1/20 mil platinum). 0nly u(t), the fluctuating velocity in the flow
direction, has been measuredso far. The hot-wire was always parallel
to the cylinder.

Traversing Mechanism

The hot-wire wasmounted on a micrometer head which allowed it to
be traversed normal to the wake and positioned to 0.001 centimeter.
The head wasmounted on a horizontal lead screw which allowed traversing
in the flow direction, in the center plane of the tunnel. The posi-
tioning in this direction was accurate to about 0.01 centimeter. The
horizontal lead screw could be turned through 90° to allow traversing
parallel to the cylinder, for correlation or phase measurements(section
"Space correlation function; phase relations"). For this purpose, a
second micrometer head with hot-wire could be set up in a fixed position
along the line of traverse of the first hot-wire. Then correlations
could be measuredbetween this point and the movable one.

Electronic Equipment

The hot-wire output was amplified by an amplifier provided with
compensation up to i0,000 cycles per second. The amplifier output could
be observed on an oscilloscope screen or measuredon a Hewlett-Packard

Model 400c vacuum-tube voltmeter. Values of u2 were obtained by reading
the root-mean-square voltage on the voltmeter. (This voltmeter is
actually an average-reading meter; it reads true root-mean-square values



18 NACA TN 2913

only for a sine wave. A few of the indicated root-mean-square values,

for turbulent velocity fluctuations, were checked against true root-

mean-square values as obtained from the statistical analyzer (see the

section "Statistical Analyzer"); these may differ up to I0 percent,

depending on the wave shape, but, at present, no corrections have been

made, since the absolute values were not of prime interest. ) Usually

only relative values of u2 were required, but absolute values could

be determined by comparing the voltage with that obtained by placing

the hot-wire behind a calibrated grid.

The frequencies of periodic fluctuations were determined by

observing Lissajous figures on the oscilloscope; that is, the amplifier

output was placed on one set of plates and a known frequency on the

other. This reference frequency was taken from a Hewlett-Packard Model

202B audio oscillator, which supplied a frequency within 2 percent of

that indicated on the dial.

Frequency Analyzer

Spectra were measured on a Hewlett-Packard Model 300A harmonic

wave analyzer. This analyzer has an adjustable band width from 30 to

145 cycles per second (defined in appendix A) and a frequency range

from 0 to 16,000 cycles. The output was computed directly from readings

of the voltmeter on the analyzer. It was not felt practicable to read

output in the frequency range below 40 cycles; therefore, the continuous

spectrum was extrapolated to zero frequency.

To determine the discrete spectrum in the presence of a continuous

background some care was required. In such cases the analyzer reading

gives the sum of the discrete spectral energy and a portion of that in

the continuous spectrum, the proportions being deternLined by the response

characteristic of the wave analyzer. The value in the continuous part

was determined by interpolation between bands adjacent to the discrete

band and subtracted out to give the discrete value, as outlined in more

detail in appendix A.

Statistical Analyzer

The statistical analyzer, designed to obtain probability functions,

operates on the principle described in the section "Distribution Functions;"

here u(t) is a voltage signal. A pulse train (fig. 3) is modulated by

u(t) and is then fed into a discri_Linator which "fires" on, when the

input pulses exceed a certain bias setting, that is, only when u(t) _ _.

For each such input pulse the discriminator output is a pulse of constant

amplitude. The pulses from the discriminator are counted by a series of

electronic decade counters terminating in a mechanical counter.
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The complete analyzer consists of i0 such discrimlnator-counter
channels, each adjusted to count above a different value of _. It will
be seen that the probability function obtained is the integral of the
probability density described in the section "Distribution Functions;"
that is,

P(_) = Probability that u(t) >

It is possible to rewrite the moments(section "Distribution Functions")
in terms of p(_), a more convenient form for calculation with this
analyzer. These are also shownin table I.

More complete details of the analyzer and computation methods may
be found in references 17 and 18.

RESULTS

Shedding Frequency

Since Strouhal's first measurementsin 1878 (reference i) the
relation between the shedding frequency and the velocity has been of
interest to many investigators. Rayleigh (reference 2, p. 413) pointed
out that the parameter nld/U o (now called the Strouhal number S) should
be a function of the Reynolds number. Since then there have been many
measurementsof the relationship (reference 19, p. 570). Oneof the
latest of these is the measurementby Kovasznay (reference Ii), whose
determination of S(R) covers the range of R from 0 to 104. Kovasznay
also madedetailed investigations of the vortex-street flow pattern at
low Reynolds numbers. He observed that the street is developed only at
Reynolds numbersabove 40 and that it is stable and regular only at
Reynolds numbersbelow about 160.

The present measurementsof S(R) are given in figures 4 and 5.
Except at Reynolds numbersbetween 150 and 300, the scatter is small,
and the measurementsagree with those of Kovasznay. The large number
of cylinder sizes used results in overlapping ranges of velocity and
frequency so that errors in their measurementshould be "smeared" out.
It is believed that the best-fit line is accurate to i percent.

The measurementsare corrected for tunnel blockage but no attempt
is madeto account for end effects. With the cylinder sizes used no
systematic variations were detected.
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Nature of Velocity Fluctuations

It was observed, as in Kovasznay's work, that a stable, regular
vortex street is obtained only in the Reynolds numberrange from about
40 to 150. The velocity fluctuations in this range, as detected by a
hot-wire, are shownon the oscillograms in figure 6, for a Reynolds
number of 80. These were taken at two downstreampositions, x/d = 6
and 48, and at several values of y/d. (The relative amplitudes are
correct at each value of x/d, but the oscillogrs_ns for x/d = 48 are
to a larger scale than those for x/d = 6.) The frequencies and ampli-
tudes are quite steady; it is quite easy to determine the frequencies
from Lissajous figures (section "Electronic Equipment"), which, of course,
are also steady.

Another example, at R : 14S, is shownin figure 7(a). (The double
signal was obtained for correlation studies and is referred to later in
the section "Spanwise Correlation and Phase Measurements." The dotted
nature of the trace is due to the method of obtaining two signals on one
screen, using an electronic switch.)

At Reynolds numbersbetween about 150 and 300 there are irregular
bursts in the signal. An example is shownin figure 7(b), at R = 180
and x/d = 6. The bursts and irregularities becomemore violent as R
increases. It is rather difficult to determine the frequency. The
Lissajous figure is unsteady because of the irregularity, but, in addi-
tion, the frequency, as well as it can be determined, varies a little.
This is the reason for the scatter in this Reynolds numberrange. Two
separate plots of S(R) obtained in two different runs are shownin
figure 8. They illustrate the erratic behavior of S(R) in this range.

At Reynolds numbersabove 300, signals like that in figure 7(c)
were obtained (near the beginning of the wake). This is typical of the
velocity fluctuations up to the highest value of R investigated (about
i0,000). There are irregularities, but the predominant (shedding)
frequency is easy to determine from a LissaJous figure. The LissaJous
figure in this case is net a steady loop, as it is at R = 40 to 150,
but neither is it so capricious as that at R = 150 to 300, and the
matching frequency is quite easily distinguished from the nearby
frequencies.

At x/d = 48, in this range, all traces of the periodicity have
disappeared and the fluctuations are typically turbulent.

Regular and Irregular Vortex Streets

The above observations showthat there are three characteristic
Reynolds numberranges, within the lower end of the shedding range.
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These will be called as follows:

Stable range 40 < R < 150

Transition range 150 < R < 300

Irregular range 300 < R < i0,0OO+

As noted above, the actual limits of these ranges are somewhatin doubt
and may depend on configuration_ free-stream turbulence, and so forth.
Also the upper limit of the irregular range is undoubtedly higher than

i0,000. (Periodic fluctuations in the wake have been observed up to

the critical Reynolds number, about 200,000, but the present measurements

did not extend beyond i0,000.)

In addition to the differences in the nature of the velocity fluc-

tuations, the ranges are characterized by the behavior of the Strouhal

number: In the stable range S(R) is rapidly rising, in the irregular

range it is essentially constant, and in the transition range it is
"unstable."

It will be seen in the further results presented below that all

phases of the wake development are different in the two ranges, stable

and irregular, and that they are indeed two different regimes of peri-

odic wake phenomena.

Relation of Shedding Frequency to Drag

The relation between the Strouhal number S(R) and the drag coef-

ficient CD(R ) has often been noted (reference 19, p. 421). Roughly,

rising values of S(R) are accompanied by falling values of CD(R )
and vice versa.

The relation to the form drag is even more interesting. The total

drag of a cylinder is the sum of two contributions: The skin friction

and the normal pressure. At Reynolds numbers in the shedding range the

skin-frictlon drag is "dissipated" mainly in the cylinder boundary layer_

while the pressure drag (or form drag) is dissipated in the wake. It

may, then, be more significant to relate the shedding frequency to the

form drag, both of which are separation phenomena. The R-dependence of

the pressure drag coefficient CDp , taken from reference 19, page 425,

is shown in figure 5. It has several interesting features:

(a) CDp is practically constant, at the value CDp = i.

(b) The minimum point A is at a value of R close to that at which

vortex shedding starts.
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(c) The maximum point B is in the transition range.

(d) In the irregular range CDp(R ) is almost a "mirror reflection"
of S(R).

Since the drag coefficient is an "integrated" phenomenon, it is

not expected to display so sharply detailed a dependence on R as does

the Strouhal number, but these analogous variations are believed to be

closely related to the position of the boundary-layer separation point,

to which both the shedding frequency and the pressure drag are quite

sensitive.

Use of Shedding Frequency for Velocity Measurements

The remarkable dependence of the shedding frequency on the velocity

and the possibility of accurately measuring S(R) make it possible to

determine flow velocities from frequency measurements in the wake of a

cylinder immersed in the flow. At normal velocities the accuracy is as

good as that obtainable with a conventional manometer, while at veloc-

ities below about 400 centimeters per second it is much better. (For

instance, at a velocity of 50 cm/sec the manometer reading is only about

0.001 cm of alcohol.) In fact, in determining S(R) in the present

experiments, this method was used to measure the low velocities by

measuring the shedding frequency at a second reference cylinder of large

diameter. The self-consistency of this method and the agreement with

Kovasznay's results are shown in figure 4.

For velocity measurements it is convenient to plot the frequency-

velocity relation in terms of the dimensionless parameter F (see the

section "Shedding Frequency") as has been done in figures 9 and i0.

The points on these plots Were taken from the best-fit line in figure 4.

They are well fitted by straight lines

(la) F = 0.212R - 4.5 50 < R < 150

(Ib) F = 0.212R - 2.7 300 < R < 2000

which correspond to

(2a) s : o.21 (i- 21.2/R) 50 < R < 150

(2b) S = 0.212(1 - 12.7/R) 300 < R < 2000

Line (2b) has been plotted in figure 4 to compare with what is considered

the best-fit line. The agreement is better than i percent. If line (2b)

is extended up to R = i0,000, the maximum error, relative to the best-

fit line, is 4 percent.
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The plot of F(R) is used as follows: The shedding frequency is
observed and F = nld2/v is calculated (v is easily determined); R is
found on the F(R) plot and the velocity is calculated from R = Uod/W.
Sometimes, as in the present experiments, only R is required.

WakeEnergy

From the velocity traces on the oscilloscope (figs. 6 and 7) it is
clear that in the regular range the fluctuating velocity u(t) is purely
periodic while in the irregular range someof the fluctuations are random.
This difference is illustrated in figure ii which showsthe distribution

of energy intensity (u/Uo)2 across the wake at two Reynolds numbers, one
in the regular range, at R = 150, and one in the irregular range, at
R = 500. 0nly half the wake is shownfor each case; the one at R = 150
is plotted on the left side of the figure and the one for R = 500, on
the right.

The total energy intensity (u/Uo)2 at each point was determined
directly from the reading on the root-mean-square voltmeter (see the
section "Electronic Equipment"). The componentsat the frequencies nI
and n2 were determined by passing the signal through the wave analyzer.
The curves in each half of figure ii satisfy the equalities

Wo/
R = 150

: \Uo] +\Uo/ +\%! R = 500

The values of (u/Uo) 2, (Ul/Uo) 2, and (u2/Uo) 2 were obtained by

measurement (and at R = 150 are self-consistent) while (ur/Uo) 2 was

obtained by difference. The absolute values indicated are somewhat in

doubt since the vacuum-tube voltmeter is not a true root-mean-square

meter but are believed accurate to about i0 percent.

The particular feature illustrated in figure Ii (already obvious

from the oscillographs) is the absence of turbulent energy at R = 150

as contrasted with the early appearance of turbulent energy at R = 500.

This contrast is typical of the regular and irregular ranges.
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The measurements shown were made at 6 diameters downstream, but

the same features exist closer to the cylinder. In fact, fluctuations

in the flow can be detected ahead of the cylinder. They display the

typical characteristics in the two ranges.

Downstream Wake Development

The downstream development for the case of figure II (but R = 500

only) is shown in figure 12. The distribution of total energy intensity

(u/Uo) 2 is shown on the left of the figure and the discrete energy

intensity (ul/Uo) 2, at the shedding frequency, is shown on the right.

Traverses were made at 6, 12, 24, and 48 diameters downstream. The

discrete energy decays quite rapidly and is no longer measurable at

48 diameters. (note that the plot of (Ul/Uo) 2 at 24 diam is shown

magnified lO times, for clarity.) A plot of (u2/Uo) 2 has not been

included since it can no longer be measured at even 12 diameters. The

distribution of (ur/Uo) 2 may be obtained from these curves by difference.

Figure 13 presents the downstream wake development in another way.

The wake energy E was calculated by integration of curves like those

in figure 12 (cf. the section "Energy"); that is,

2
Figure 13 is a plot of the energy ratio (El + E2)/E, that is, the ratio
of the discrete energy relative to the total energy.

In the irregular range the energies were computed in this way at

R = 500 and 4000 (two cylinder sizes in each case) and R = 2900 (one

cylinder). Figure 13 shows that the decay in all these cases is similar

and the wake is completely turbulent at 40 to 50 diameters.

The value of x/d for which EI/E becomes zero was determined

for a variety of cylinders, varying in size from 0.06 to 1.3 centimeters

and at Reynolds numbers from 200 to lO,O00. The value was found to lie

between 40 and 50 in all cases but closer to 40. A precise determina-

tion is difficult (and not important) because of the asymptotic approach

of E1/E to zero (E2 is already zero at less than 12 diam).

In contrast with this, the stable range (R = 50 and i00 in fig. 13)

has no development of turbulence before 50 diameters. The plots for

R = 150 and 200 illustrate the rather spectacular transition from the

stable range to the irregular.
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For R = 50 and 100 the energy ratio remained constant at unity up

to x/d = 100. Beyond that the energy intensity is so low that the tunnel

turbulence cannot be neglected.

Measurements of Spectrum

Figure 14 shows spectrum measurements at 6, 12, 24, and 48 diameters

downstream at a Reynolds number of 500, in the irregular range. The

lateral position y/d chosen for the measurement at each x/d is the

one for which (ul/Uo) 2 is a maximum (cf. fig. 12). The method of

plotting is as follows. The curve through the experimental points is

the continuous spectrum Fr(n) , plotted in normalized coordinates. The

discrete energies F1 = 5(n - nl) and F2 = 5(n - n2) are indicated

by narrow "bands" which should have zero width and infinite height but

are left "open" in the figure. The relative energies represented by

the areas under the continuous curve and under the delta functions, respec-

tively, are marked in the figure wlth values of Ur2/U2 and Ul2/U 2,

u22/u 2 .

To normalize the continuous spectrum the dimensionless parameters

U° Fr(n ) and _ = L n are used. In each case the curve

4
= is included for reference. The normalizing coefficient

1 + (2nn) 2
was determined as follows:

L

(a) Fr(O ) was found by extrapolation of the measured values to
n = O.

(b) Fr(0 ) and the other values of

f F(n) dn: 1.

Fr(n) were normalized to make

U° Fr(0) = 4.
(c) L was found from -_-

In short_ the measured curve and the reference curve were made to agree

in _r(O) and in area. This requirement determines L.

In these coordinates the shedding frequency shows an apparent

increase downstream; this is because the normalizing parameter L

increases. For x/d = 48 the shedding frequency (i.e., nl) is marked

with a dash; it contains no discrete energy at this value of x/d.
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The "bumps" in the continuous spectrum, near nI and n2, indicate

a feeding of energy from the discrete to the continuous spectrum. The

portion of the spectrum near n = O, which is established early and which

contains a large part of the turbulent energy, seems to be unrelated to

the shedding frequency (cf. fig. 15). As the wake develops the energy

in the bumps is rapidly redistributed (part of it decays) to smooth the

spectrum, which, in the fully developed turbulent wake at 48 diameters,

4
tends toward the characteristic curve q_ -

i + (_n)2"

In figure 16 the spectrum for x/d = 12 and y/d = 0.8 is plotted

together with the one at y/d = O. The curves are similar at low fre-

quencies (large eddies) and at high frequencies; they differ only in

the neighborhood of the discrete band. (The slight discrepancy between

this figure and fig. 14 is due to the fact that they were measured at

two different times, when the kinematic viscosity v differed. This

resulted in different values of nI at the same R. )

A similar downstream development is shown in figure 15 for R = 4000.

Here the spectrum at x/d = 6 is smoother than that in the previous

example (fig. 14). This effect may be due not so much to the higher

Reynolds number as to the fact that the shedding frequency is closer to

the low frequencies; that is, the shedding frequency is "embedded" in

the low-frequency turbulent band. It seems to result, at 48 diameters,

in a much closer approach to the reference curve.

Figure 17 shows the spectra at 48 diameters for three cylinders and

several values of y/d. It is remarkable that R = 4000, d = 0.477 cm

agrees better with R = 500, d = 0.190 cm than with R = 4000,

d = 0.953 cm. This seems to bear out the above remark about the rela-

tive influence of R and nl, for the respective shedding frequencies

are 565, 440, and 144.

Finally it may be noted that values of Ur2, which in figure ii

were obtained by difference, check well with the values computed from

Ur2 = I Fr(n) dn (before normalization of Fr(n)).

Spectra for the regular range are not presented, for they are simple

discrete spectra.
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Spanwise Correlation and Phase Measurements

The function Rz was not measured, but the main features of the
spanwise correlation 4 are illustrated in figures 7 and 18.

Figure 7 showsthree examples, in each of which simultaneous signals
were obtained from two hot-wires at x/d = 6 and y/d = i and separated
by 50 diameters spanwise. The two signals were obtained simultaneously
on the oscilloscope screen by meansof an electronic switch. This
accounts for the dotted traces.

At R = 145 (fig. 7(a)) the correlation is perfect but there is a
phase shift. At R = 180 (fig. 7(b)) the correlation is still good but
the individual signals occasionally break down. The breakdowns are
uncorrelated at this distance of 50 diameters. At R = 500 (fig. 7(c))
each signal still showsa predominant frequency. There is somevariation
in phase between the two signals. The amplitude irregularities appear
to be uncorrelated.

Figure 18 showsthe correlation figures obtained by placing the
signals of the two hot-wires on the horizontal and vertical plates_
respectively, of the oscilloscope.

For R = 80 and _/d = i00 a steady Lissajous figure is obtained,
showing that the periodic fluctuations at the two points (i00 diam apart)
are perfectly correlated (but they are not in phase).

For R = 220 and 500 there is good correlation only at small values
of _/d, that is, only whenthe two hot-wires are in the same"eddy," so
to speak. For R = 500 the figures are similar to those obtained in
fully developed turbulence.

In obtaining these correlations a remarkable phenomenonwas observed.
The stable vortex street (that is, R < 150) has a periodic spanwise
structure. This was shownby the phase shifts on the Lissajous figure,
as the movable hot-wire was traversed parallel to the cylinder. From
the phase coincidences observed, the wave length parallel to the cylinder
was about 18 diameters at a Reynolds numberof 80. It has not been deter-
mined whether this periodicity structure is due to a "waviness" in the
vortex filaments or whether the vortex filaments are straight but inclined
to the cylinder axis.

4In the remainder of this section a distinction is madebetween the
terms "correlation function" and "correlation." The former refers to
the function defined in the section "Space correlation function; phase
relations" while the latter is used in a looser, descriptive sense.
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Statistical Measurements

A few amplitude distribution functions were measuredand are shown
in figure 19. Onemeasurementis in the stable range; the other shows
downstreamdevelopment in the irregular range.

The table in figure 19 showsvalues of c and _ computedfrom
these curves. The behavior, of course, is as expected, but the numerical
values are of someinterest. These values (and the curves) showthat at
R = lO0 the signal was practically triangular but had rounded "tops,"
At R = 500 the downstreamdevelopment of randomnessis shownby the
tendency of c and _ toward the Gaussian values.

The distribution is in fact not Gaussian, as maybe seen in the
figure, for its skewness _ is quite high.

Vortex Rings

The flow behind wire rings was briefly investigated. The dimensions
of the rings used are given in table II.

With the rings of diameter ratio D/d = i0 vortices are shed from
the wire in almost the sameway as from the straight wire, and there is
apparently an annular vortex street for somedistance downstream. The
Strouhal nt_nber, measuredfrom R = 70 to 500_ is lower than that for
the straight wlre (about 3 percent at R = 500 and 6 percent at R = lO0).

Fluctuating velocity amplitudes were measured in the wake at several
downstreampositions. The results for the largest ring, measuredalong a
diameter, are shownin figure 20. It should be noted that u_ rather
than the energy has been plotted here (cf. fig. ll); only relative val-
ues were computed. Close behind the cylinder the wake behind the wire
on each side of the ring is similar to that behind the straight wire,
but the inside peaks are lower than the outside peaks. This n_kybe
partly due to th_ interference of the hot-wire probe, for a similar
effect, much less pronounced, was noticed in the measurementsbehind a
straight wire.

Farther downstreamthere was someindication of strong interaction
between the vortices, for a peak could not be followed "smoothly" down-
stream. However, the investigations were not continued far enoughto
reach conclusive results. At about 40 diameters downstreamthe flow
becameunstable.
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The ring with D/d = 5 behaved somewhatdifferently. The observed
frequencies gave values of Strouhal numberas shownin table III. The
table showsvalues of S and R based on the wire diameter, as well
as values of SD and RD based on ring diameter. Between R = 153
and 182 there is a sudden increase in S, and at higher Reynolds numbers,
in what corresponds to the irregular range, the shedding is similar to
that from a straight wire, while in the stable range the shedding is at
a much lower frequency. Fromthe observations madeit seemslikely that
in the stable range the ring acts like a disk, shedding the vortex loops
observed by Stanton and Marshall (reference 18, p. 578, and reference 20).
Stanton and Marshal do not give their frequency-velocity observations
except at the critical RD, where shedding first starts. They observed
this to be at about RD = 200, with a corresponding SD of 0.12.

Again, these experiments were too incomplete to warrant definite
conclusions, but the difference in behavior for D/d = i0 and D/d = 5
is interesting. This behavior is similar to that observed by Spivack
(reference 21) in his investigation of the frequencies in the wake of a
pair of cylinders which were separated, normal to the flow, by a gap.
He found that whenthe gap was just smaller than i diameter instability
occurred. For larger gaps the cylinders behaved like individual bodies,
while for smaller gaps the main frequencies were, roughly, those corre-
sponding to a single bluff body of dimension equal to that of the combined
pair, including the gap.

DISCUSSION

The most significant results of this investigation may be discussed
in terms of the Reynolds number ranges defined in the section "Regular

and Irregular Vortex Streets," namely, the stable range from R = 40 to ISO,

the transition range from R = 150 to 300, and the irregular range above

R = 3o0.

Stability

The transition range from R = 150 to 300 displays the character-

istics of a laminar-turbulent transition, and it is instructive to compare

the stability of the flow around the cylinder with boundary-layer sta-

bility. The flo_ in the irregular range has turbulent characteristics,

while in the stable range it is essentially viscous.

The Reynolds number regimes may be described as follows: Below

R = 40 the flow around the cylinder is a symmetric, viscous configura-

tion, with a pair of standing vortices behind the cylinder. At about

R = 40 this symmetric configuration becomes unstable. It changes to a



30 NACATN 2913

new, stable configuration which consists of alternate periodic breaking
aw_v of the vortices and formation of a regular vortex street. The
instability at R = 40 is not a laminar-turbulent instability; it
divides two different ranges of stable, viscous flow. In either range,
disturbances to the stable configuration will be dampedout.

On the other hand, the transition range from R = ISO to 300
involves a lsm_ar-turbulent transition. To understand how this transi-
tion is related to the vortex shedding, it is necessary to know something
about the formation of the vortices. Involved in this formation is the
circulating motion behind the cylinder as shownin the following sketch.
A free vortex layer (the separated boundary layer) springs from each
separation point on the cylinder. This free layer and the backflow behind
the cylinder establish a circulation from which fluid "breaks away" at
regular intervals.

Shear layer _LTurbulent -7
aminar [

\j c_ ----
--

c'j 

The laminar-turbulent transition is believed to occur always in
the free vortex layer; that is, the circulating fluid becomes turbulent

before it breaks away. Then each vortex passing downstream is composed
of turbulent fluid.

The point in the free vortex layer at which the transition occurs

will depend on the Reynolds number. This transition was actually observed

by Schiller and Linke (reference 18, p. 555, and reference 22) whose

measurements were made at cylinder Reynolds numbers from 3500 to 8500.

The distance to the transition point# measured from the separation point,

decreased from 1.4 diameters to 0.7 diameter, and for a given Reymolds

number these distances decreased when the free-stream turbulence was

increased. Dryden (reference 23) observed that at some value of R,

depending on free-stream turbulence and so forth, the transition point

in the layer actually reaches the separation point on the cylinder.

This point then remains fixed and vortex shedding continues, essentially

unchanged, up to Reynolds numbers above i00,000, that is, up to the

value of R for which transition begins in the cylinder boundary layer

ahead of the separation point. It is quite likely that even above this
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critical value of R the phenomenon is essentially unchanged, but now

the vortex layers are much nearer together and the vortices are diffused
in a much shorter downstream distance.

In summary, vortex formation in the stable range occurs without

laminar-turbulent transition. The circulating fluid breaks away peri-

odically, and alternately from the two sides, forming free "viscous"

vortices which move do_,_stream and arrange themselves in the familiar

vortex street. In the irregular range transition occurs in the circu-

lating fluid before it breaks away, and the vortices are composed of

turbulent fluid. The transition range corresponds to the similar range

in boundary-layer stability, and it displays a similar intermittency.

The values R = 150 and 300 used to define the range are expected to

be different in other experiments, depending on wind-tunnel turbulence,

cylinder roughness, and so forth.

Shedding Frequency

The Strouhal number and Reynolds number dependence is different in

the two ranges. In the stable range S(R) is rapidly rising, while in

the irregular range it is practically constant.

Fage and Johansen, who investigated the structure of the free vortex

layers springing from the separation points on various bluff cylinders

(reference 9), made an interesting observation on the relation of the

shedding frequency to the distance between the vortex layers. This

distance increases as the cylinder becomes more bluff, while the shedding

frequency decreases. In fact, if a new Strouhal number S' is defined

in terms of the distance d' between the free vortex layers (instead

of the cylinder dimension d), then a universal value S' _ 0.28 is

obtained for a variety of (bluff) cylinder shapes. The measurements of

reference 9 were made at R = 20,000, but it is believed that the simi-

larity exists over the whole irregular range. It does not extend to the

stable range. To check this point the shedding frequency was measured

in the wake of a half cylinder placed with the flat face broadside to

the flow. It was found that S(R) was rising for Reynolds numbers below

300 and then became practically constant at the value S = 0.140. For a

similar case, at R = 20,000, Fage and Johansen found S = 0.143.

The universality of the constant S' is useful in systematizing

the shedding phenomena (at least in the irregular range). It indicates

that when the circulating fluid behind the cylinder is turbulent then

the formation of free vortices is similar for a variety of bluff shapes

and over a wide range of Reynolds numbers.

Finally, the relation between Strouhal number and form drag coef-

ficient has been mentioned in the section "Relation of Shedding Frequency

to Drag." In the irregular range the slight variations in S(R) reflect

slight variations of CDp and so, probably, of the separation point.
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However, constancy of CDp is not enoughto insure a fixed separation
point. For instance, CDp remains practically constant downto Reynolds
numbersbelow the shedding range, but the separation point there is
farther back than it is at higher Reynolds numbers. It would seemworth
while, and fairly easy, to measurethe position of separation as a func-
tion of Reynolds numberover the whole shedding range, that is, to com-
plete the data available in the literature.

DownstreamDevelopment

The way in which the wake develops downstreamis quite different
in the stable and irregular ranges.

Whenthe circulating fluid breaks awaybefore the occurrence of
transition in the free vortex layers (i.e., below R = 150) then the
free vortices which are formed are the typical viscous vortices. There
is no further possibility for the fluid in them to becometurbulent.
The vortices simply decay by viscous diffusion as they movedownstream
(see the section "Spread of Vortex Street" in appendix B).

Whenturbulent transition does occur, then the vortices which are
formed consist of turbulent fluid. They diffuse rapidly as they move
downstreamand are soon obliterated, so that no evidence of the shedding
frequency remains. This development to a completely turbulent wake takes
place in less than 50 diameters. In terms of the decay of the discrete
energy (fig. 13), the development is roughly the samefor Reynolds numbers
from 300 to i0,000. This again indicates a remarkable similarity over
the whole irregular range.

The stable and irregular ranges are also characterized by the dif-
ference in the energy spectra of the velocity fluctuations. It has been
pointed out that in the irregular range a continuous, or turbulent, part
of the spectrum is established at the beginning of the wake development.
This turbulence is a result of the transition in the free vortex layers
and might be expected to be independent (at first) of the periodic part
of the fluctuation, which results from the periodic shedding. Indeed,
most of the energy at first is concentrated at the shedding frequency n1
(someat n2) , and it maybe represented as a discrete (delta function)
part of the spectrum, within the accuracy of the measurements(cf.
appendix A). However, the continuous and discrete parts are not entirely
independent, as shownby the bumpsnear nI and n2 (fig. 14). This
maybe regarded as a result of energy "feeding" from the discrete to the
continuous parts of the spectrum, and it proceeds in a way which tends
to "smooththe spectrum. Such transfer of energy between spectral bands
is a process depending on the nonlinear terms of the equations of motion.
The "activity" in the spectrum, at any stage of its development_maybe
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regarded as an equilibrium between the nonlinear and the viscous terms.
It is an important problem in the theory of isotropic turbulence.

The spectral activity near the frequency of discrete energy might
be looked upon as a simplified case in which a single band has an excess
of energy and the spectral energy flow is unidirectional, that is, out
of it into the adjacent bands. However, the nonhomogeneouscharacter of
the field involved (the wake) reduces the simplic'ity, for it is necessary
to take account of energy transfer across the wake. One interesting
possibility is to superimpose a homogeneous(isotropic) turbulent field,
by meansof a screen ahead of the shedding cylinder, and to study the
effect of this field on the spectral activity near the discrete band.
Although the wake will still introduce nonhomogeneity (not even counting
the periodic part of the motion), it maybe possible to arrange the
relative magnitudes to give significant results from the simplified model.

To study such problems the technique for measuring the spectrum
(appendix A) near the frequency of discrete energy will be improved.

To summarize, it is suggested that the initial development of the
spectrum might be regarded as follows. The continuous and the discrete
parts are established independently, the one by the transition in the
vortex layers and the other by the periodic shedding. The turbulence
due to the transition is the "primary" turbulent field and its spectrum
is the typical, continuous (turbulent) spectrum. (It has been noted in
the section "Measurementsof Spectrum" that the low-frequency end of the
spectrum is established early; it would contain only energy of the primary
field. S) The discrete part of the spectrum is embeddedin the turbulent
part, and it thereby is "excited" into soectral transfer. Someof its
energy is transferred to the adjacent frequency bands resulting, initially,
in the development of bumps in the continuous spectrum. Subsequently, as
the spectral transfer proceeds, the spectrum becomessmooth.

The above discussion is an abstract way of saying that the vortices
are diffused by a turbulent fluid (instead of a viscous one). The dif-
fusion involves the nonlinear processes typical of turbulence; the study
of these processes, in terms of spectrum, is an important problem.

There is a similar case of turbulent, periodic structure in the
flow field between two cylinders, one of which rotates. Taylor's dis-
covery of the periodic structure of the flow is well-known (reference 24).
Whenthe inner cylinder rotates, it is possible to obtain a steady, regular

Sin the theory of homogeneousturbulence it is shownthat the low-
frequency end of the spectrum is invariant, a property related to the
Loitsianski invariant.
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arrangement of ring vortices, enclosing the inner cylinder, and having,
alternately, opposite directions of circulation. Above a critical value
of the speed of rotation this laminar, periodic structure becomesunstable
and the fluid becomesturbulent, but alternate ring-shaped vortices still
exist at speeds several hundred times the critical speed (reference 25).

Statistics

The probability distribution functions (fig. 19) display the
characteristics which are expected, from the other observations. The
contrast between the functions at R = i00 and R = 500, that is, in
the stable and irregular ranges, respectively, is quite evident. In
the irregular range, even at x/d = 6, where most of the energy is
discrete, there is a marked irregularity in the fluctuation, as shown
by the high value of _.

However, these descriptions are little better than qualitative, and
it is hoped to obtain more interestin_ results by extending these sta-
tistical methods. Of particular interest in the development of random
from periodic motion would be the relation between the probability dis-
tributions and the spectra. For instance, it is plain that a purely
periodic function (discrete spectrum) will have a probability distribu-
tion with finite cutoff, while development of randomirregularities in
the function's amplitude is strongly reflected in (i) a "spreading" of
the distribution function to higher values of _ and (2) the appearance
of a continuous spectrum. However, the relation between the two is not
unique; that is, the spectrum does not give (complete) information about
the probability distribution, and vice versa. It is not clear what the
correspondence is and whether useful relationships maybe obtained, pos-
sibly for restricted classes of functions.

Suggestions for Future Investigations

Somefurther lines of investigation indicated by these experiments
are summarizedbelow.

(a) The transition from the stable to the irregular range should
be investigated with controlled disturbances, for example, cylinder
roughness and free-stream turbulence. It is expected that the limits
of the transition range (roughly R = 150 to 300 for the experimental
conditions here) will be lower for higher free-stream turbulence or
cylinder roughness. The critical cylinder Reynolds numbers should be
related to corresponding numbersfor the transition point in the free
vortex layers (based on distance from separation point or on the thick-
ness of the layer).
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Such studies of stability to different disturbance amplitudes and
frequencies are well-known in the case of the boundary layer. A varia-
tion of the experiments of Schubauer and Skramstad (reference 26), who
used an oscillating wire in the boundary layer to produce disturbances
of definite frequencies, would be to use a second shedding cylinder.

(b) A study of the spectral development in the neighborhood of a
discrete band, the effect of a turbulent field on its activity, and so
forth (discussed in the section "DownstreamDevelopment") maybe the most
fruitful continuation of these experiments. So far, the problem has been
approached only in the theory of isotropic turbulence, where it has not
advanced muchbeyond the similarity considerations of Kolmogoroff, and
very little is knownabout the form of the spectral transfer function.

Interactions between discrete bands, for example, at slightly dif-
ferent frequencies, can be studied by the use of two or more cylinders
arranged to "interfere" with each other (somesuch studies have been
madeby Spivack (reference 21) but not from this viewpoint), or possibly
by using one cylinder having diameter changesalong its span.

(c) Townsendhas recently used the concepts of intermittently
turbulent flow and local isotropy in his investigations of the turbulent
wake and has obtained a new description of its structure (reference 27).
His studies were madeat downstreamdistances of 80 diameters or more,
so that the wake was fully turbulent. Probably the structure he describes
is essentially the sameup to the beginning of the fully developed wake
(about 50 diam), but then there is the question of how it is related to
the earlier developments. The most obvious "early developments" are the
turbulent transition in the free vortex layers and the periodic shedding.
(Although the shedding frequency is no longer distinguished far do'wn-
stream, it is prominent in the early spectral developments and thus has
an influence on the downstreamwake.)

Such studies will involve considerably more detailed investigations
of the wake structure than were madehere, possibly along the lines of
Townsend's experiments and the classical measurementsof energy balance
across the wake. The other two componentsof the energy v2 and w2
will be needed.

(d) The nature of the circulating flow behind the cylinder and the
formation of free vortices, that is, the shedding mechanism, should
receive further attention.

(e) The spanwise periodic structure of the vortex street should
be investigated, beyond the very cursory observations madehere. In
particular, a study of the stability of single vortex filaments seems
important.
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(f) Measurementsof the fluctuating forces on the cylinder, due
to the shedding, would be interesting and should have immediate practical
applications. There seemsto be very little information about the magni-
tude of these forces. It might be obtained either by direct measurement
of forces (on a segment) or pressures (with pressure pickups) or inferred
from measuramentsof the velocity fluctuations close to the cylinder. In
addition to the magnitude of the force or pressure fluctuations, their
spanwise correlation is of prime importance.

CONCLUSIONS

An exper_ntal investigation of the wakedeveloped behind circular
cylinders at Reynolds numbersfrom 40 to 10,O00 indicated the following
conclusions:

i. Periodic wake phenomenabehind bluff cylinders maybe classified
into two distinct Reynolds numberranges (joined by a transition range).
For a circular cylinder these are:

Stable range 40 < R < 150

Transition range 150 < R < 300

Irregular range 300 < R < i0,000+

In the stable range the classical, stable K_rm_ streets are formed;

in the irregular range the periodic shedding is accompanied by irregular,

or turbulent, velocity fluctuations.

2. The irregular velocity fluctuation is initiated by a laminar-

turbulent transition in the free vortex layers which spring from the

separation points on th2 cylinder. The first turbulent bursts occur

in the transition range defined above.

3. In the stable range the free vortices, which move downstream,

decay by viscous diffusion, and no turbulent motion is developed. In

the irregular range the free vortices contain turbulent fluid and diffuse

faster; the wake becomes fully turbulent in 40 to 50 diameters.

4. A velocity meter based on the relation between velocity and

shedding frequency is practical.

5. In the stable range a spanwise periodic structure of the vortex
street has been observed.
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6. An annular vortex-street structure has been observed behind rings
having a diameter ratio as low as lO.

California Institute of Technology
Pasadena, Calif., May 29, 1952
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APPENDIXA

EXPERIMENTALANALYSISOFSPECTRUM

These notes supplement the brief descriptions in the sections
"Frequency Analyzer" and "Measurementsof Spectrum."

Analyzer Response

Consider the response of a spectrum analyzer, such as that used in
the present experiments, to a mixed periodic-random input, and in particu-
lar consider the problem of inferring the input from the output.

The input, an energy or power, has a randomand a periodic component:

uz =%2 +UlZ (n)

The corresponding spectra are defined by

where

oo

= u-2 F(n) dn

oo

u 2 --_ _ (n) dn (A2)r = Ur Fr

_0 °°
--2 = Ul 2 Fl(n ) dn

Fl(n ) = 5(n - nl) (A3)

and 5(n) is the Dirac delta function.

The response characteristic of the analyzer may be obtained by

considering the effect of a periodic input. When the analyzer setting

n A coincides with the input frequency nI the output is a maximum,
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and whenthe setting is movedawayfrom nI the output falls off.
response characteristic is

R(nl - hA) =
Output at setting nA

Output at setting nA = nI
= R(n A - nl)

The output spectrum G(nA) of the analyzer is related to the input

spectrum F(n) by (cf. reference 15)

_he

(A4)

_0 _
G(nA) = F(n)R(n - hA) dn

w CO

Urn" _O rr(n)R(n _ nA)d_-_ ul_ O_ _(_ll _ nA)R(n _ nA)dn

_eo

=__ur 
u2

Fr(n)R(n - nA) dn+ _±__ R(n I - nA)
u 2

(AS)

Since R(n - nA) is sharp, that is, almost a delta function (see the

section "Half Band Width," Fr(n ) may be considered to be constant over

the significant interval of integration in equation (AS). Then

where

m

Ur2
G(nA) : _ Fr(nA)Q + Ul zz R(nl - nA)

u2 u_
(A6)

°Q = R(n - hA) dn = R(n - nA) dn A (A7)

is the area under the response characteristic.

Equation (A6) gives the output for a mixed periodic-random input.

It is required to find the separate terms which make up this sum. The

procedure is outlined in the section "Separation of Discrete Energy" below.
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Half Band Width

The resolution of the analyzer is determined by its half band
width _. This is defined as the numberof "cycles off resonance" at
which the output falls off to O.O1percent; that is

R(nI - _) = 0.0001 (AS)

For an ideal analyzer the response characteristic would be a delta
function, but even with half band widths from 30 to 145 (which is the
range of the analyzer used here) the characteristic is quite sharp, rela-
tive to the frequency intervals of interest. The values 30 to 145 seem
quite high, but they are a little misleading because of the high attenua-
tion used to define _. For example, if the response-characteristic
half band width _ is 30 cycles per second it has a total width of only
6 cycles per second at 50 percent attenuation.

Separation of Discrete Energy

To separate the discrete energy Ul2 from the continuous spectrum
the following procedure is used.

At nI + _ and nI - _ (see sketch) the contribution from u12 is

u-_G(nA)Q

nI - _ nI n; + _ nA
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only 0.01 percent, so the measuredpoints there are assumedto lie on the
continuous spectrum. It is assumedat first that the continuous spectrum
between these points maybe determined by interpolation, and its value

at nI is calculated. Then u12 is determined by difference and the
last term in equation (A7) is calculated, since the form R(n) is known.
The first term in equation (A6) then gives the values of G(nA) in the
vicinity of nl; these should check the measuredvalues.

If, however, the continuous spectrum within the band width has a
bump, then the above calculation is not self-consistent, and the true

values can be determined by successive estimates of u12.

In principle the method is satisfactory, but in practice the
accuracy is low because in the regions of interest, that is, near peak
frequencies, it depends on the differences of relatively large quantities.
Oneof these, R(n), is knownprecisely, but the precision is difficult
to realize since the settings on the analyzer cannot be read accurately
enough. For the spectral investigations discussed in the section
"DownstreamDevelopment" the technique will be improved.
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APPENDIXB

NOTESONVORTEX-STREETGEOMETRYANDSHEDDINGFREQUENCY

The regularity of the vortex shedding and its sensitivity to
velocity changeshave undoubtedly intrigued everyone who has investigated
the flow past bluff bodies. However, as K_rm_ pointed out in his first
papers on the vortex street, the problem is inherently difficult,
involving as it does the separation of the boundary layer from the
cylinder, and there is yet no adequate theoretical treatment of the
mechanism.

The following notes maybe useful as a summaryof the interesting
features of the problem. They are based largely on the literature but
include someresults obtained during the present experiments. Chapter XIII
of reference 19 has a very useful review and list of references.

Idealized K_rmaluStreet

Kan_n's theory treats a double row of potential vortices, infinite
in both directions. The distance between the rows h and the spacing
of the vortices in each row Z are constants. The vortices have strength
(circulation) F which, with the geometry, determines the velocity V
of the street relative to the fluid. The theory showsthat the configura-
tion is stable whenthe rows are staggered by a half wave length and the
spacing ratio is

: 0.281 (BI)

The circulation and velocity relative to the fluid are then related by

r-c- : z.83 (Bz)
VZ

Two of the parameters (h, _, F, and V) must be determined from some

other considerations. In the real vortex street they must be related

to the conditions at the cylinder.

Real Vortex Street

The real vortex street, even in the stable range, differs from the

idealized one in the following points:
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(I) The street is not infinite. It starts shortly downstreamof
the cylinder and eventually loses its identity far downstream. However,
the classical vortex-street patterns extending for lO or more wave lengths
should be a good approximation.

(2) The vortex spacing is not oonstant. In particular, the lateral
spacing h increases downstream.

(3) The real vortices must have cores of finite radius. These grow
downstream, so that the vortices diffuse into each other and decrease
their circulation. For the samereason the velocity V is expected to
differ considerably from the theoretical value, since it is strongly
dependent on the configuration.

Related to these considerations is the way in which the vortices
are first formed. At Reynolds numbersbelow the shedding range a sym-
metrical pair of eddies is formed at the back of the cylinder. As the
Reynolds number increases these two eddies grow and becomemore and more
elongated in the flow direction, until the configuration is no longer
stable and becomesasymmetric. Oncethis occurs the circulating fluid
breaks away6 alternately from each side to form free vortices which flow
downstreamand arrange themselves into the regular, stable vortex street.

In the irregular range the process is similar, except that the fluid
is turbulent (because of the transition in the free vortex layers).

DownstreamVortex Spacing

In the flow past a stationary cylinder the frequency with which
vortices of one row pass any point is given by

UO - V
nI - (B3)

This must be the sameas the shedding frequency

nI = SUo/d (B4)

Twouseful expressions result:

d S

@ossibly the breaking away should be regarded as prLmary, resulting

in asymmetry.
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or

v 1 sz (s6)
U o d

1
In a real vortex street, V--->0 far downstream and then _--_. Or,

if SZ/d is known from measurements, then V/U o may be computed.

An example of measured values of l/d is shown in figure 21. These

were taken from the streamline plot obtained by Kovasznay (reference ii)

at R = 53 (for which S = 0.128). There is a little scatter but _/d

does approach the constant value I/S = 7.8.

The scatter, while relatively unimportant in the case of I/d,

gives very low accuracy for values of V/U o calculated from equation (B6).

These have also been plotted in figure 21. It is surprising that some

of the values, near the cylinder, are negative (corresponding to values

of Z/d higher than l/S); it is believed that this results from the

combined difficulty of estimating the vortex centers, especially near

the cylinder, and the sensitivity of equation (B6). (However, it must

be noted that negative values of V are not impossible. Negative V

simply means that the vortex velocity is directed upstream relative to

the fluid, while it is still downstream relative to the cylinder. Such

a possibility exists at low values of x/d, where the mean velocity at

the edges of the wake is considerably higher than U o.)

Another way to obtain V/U o is to assume that the vortex centers

move with the local mean velocity. Kovasznay's paper includes measure-

ments of mean velocity profiles. From his results the mean velocity

along the line of vortex centers U* has been determined and from it

U*
V - i - has been calculated. The result is plotted in figure 21.
Uo 97o
Near the cylinder it does not agree with the values obtained by the

previous method; it is believed that this is principally due to the
difficulties mentioned above and that the dete_mlnation of V/U o from

i - (U*/Uo) is more accurate.

Lateral Spacing

The lateral spacing, at least initially, must be determined by

conditions near the cylinder. The way in which this spacing increases

downstream is discussed, for the stable range, in the section "Spread

of Vortex Street."
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In the irregular range, the dependenceof the shedding frequency
on the distance between the free vortex layers, noted by Fage and Johansen
(see the section "Shedding Frequency"), leads to an interesting estimate
of the initial lateral spacing of the free vortices. The maximumdis-
tance d' between the free vortex layers, instead of the cylinder dimen-
sion d, maybe used to define a new Strouhal number

d !

s' : nl _ (BT)

Fage and Johansen found that, whereas S varies considerably with

cylinder shape, S' is practically constant for a variety of bluff

cylinders. Now the initial lateral spacing h' of the free vortices

will be roughly the same as d', possibly a little smaller:

d !

h_'_: (i- _)T (BS)

Then, comparing with equations (B6) and (B7),

h' 1 - £
s! (Bg)

1 - (V/Vo)

From the measurements of Fage and Johansen, S' _ 0.28. The factor

I - c _ i. Thus equation (B9) gives h'/_ = 0.28; that is, the
i - (V/Uo)
spacing ratio agrees with K_rm_n's value, at least close to the cylinder.

Shedding Frequency

There is yet no adequate theory of the periodic vortex shedding,

and it is not clear what is the principal mechanism which determines

the frequency.

The downstream spacing ratio is related to the shedding frequency

by equation (B3) and to the lateral spacing by a stability criterion

(e.g., K_rm_n's value of 0.28 for the idealized street). It might be

considered that the shedding frequency is determined by the spacing

requirement, or, conversely, that the shedding is primary and determines

the downstream spacing. The latter viewpoint seems the more plausible

one; that is, the shedding frequency is established by a mechanism which

depends on features other than the vortex spacing. It is necessary to
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obtain a better understanding of the flow field near the cylinder. One

of the elements involves the problem of separation, particularly the

nonstatlonary problem. Another that requires more study is the flow

field directly behind the cylinder.

With a better knowledge of these, and possibly other, features it

may be possible to set up a model of the shedding mechanism. In the

meantime it is not clear whether the vortex spacing requirement is

decisive in determining the frequency.

Destabilization 7 of Shedding

The following experiment illustrates the dependence of the periodic

shedding on "communication" between the free vortex layers, that is, on

the flow field directly behind the cylinder. A thin flat plate was

mounted behind the cylinder in the center plane of the wake (fig. 22).

It was completely effective in stopping the periodic shedding. Spectrum

measurements in the flow on one side of the plate are shown in figure 22.

At R = 7500 no significant frequencies could be separated out from the

continuous background. At R = 3200 there were several predominsmt

frequencies (all higher than the shedding frequency for the cylinder),

but, by the time the flow reached the end of the plate, 5 diameters

downstream, it was completely turbulent. (The shedding frequency n 1
for the cylinder is marked in the figures.)

The important effect, on the shedding, of the flow field directly

behind the cylinder is apparent. Probably an even shorter length of

plate would be effective in destabilizing the periodic shedding, and

there may be a most effective position for such an interference element.

Kovasznay remarks that the hot-wire probe used in investigating the

vortex street must be inserted from the side, for if it lies in the

plane of the street it has a strong destabilizing influence.

A more complete study of the destabilization of shedding by such

interference devices may be quite useful from a practical viewpoint.

Structural vibrations and failures are often attributed to the periodic

forces set up on members exposed to wind or other flow (smokestacks,

pipe lines, structural columns, to mention a few). In maz4y cases it

might be possible to destabilize the vortex shedding by addition of

simple interference elements or by incorporating them in the original

designs. In the case where one member is buffeted by the wake of another

the same principle might be applied.

7The stability considered in this section is not with respect to

laminar-turbulent transition; it concerns the stability of the periodic

shedding (cf. the section "Stability").
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Spread of Vortex Street

It has been observed by most investigators that the spacing ratio
h/Z is K_rn_n's value (0.28) close to the cylinder but increases rapidly
downstream. The increase of h/Z is mainly due to the increase of h,
since Z changesvery little (fig. 21). In the stable range this is
the result of viscous diffusion of the real vortices.

Hooker (reference 28) has madean interesting anaulysis. First, a
real vortex has a core of finite radius; its center is the point of zero
velocity and maximumvorticity. Hooker showsthat in a vortex street,
where the velocity field of the other vortices must be taken into account,
the points of zero velocity and maximumvorticity do not coincide. The
point of maximumvorticity is unchangedbut the point of zero velocity
is farther awayfrom the center of the street. As the vortex decays,
the point of zero velocity movesfarther out, its distance from the
center of the street increasing almost linearly with time. Thus the
spacing based on vorticity centers remains constant, while the spacing
based on velocity centers increases linearly. Hooker's calculation of
the linear spread checks fairly well with somepictures taken by Richards
(reference 29) in the wake of an elliptical cylinder having a fineness
ratio of 6:1 and the major diameter parallel to the free-stream velocity.

However, the spread of the wake is not always observed to be linear.
Amongthe different investigators there is a large variation of results,
apparently dependent on the experimental arrangement. In Richards'
experiment the cylinder was towed in a water tank and the vortex patterns
were observed on the free surface.

In Kovasznay's experiment the cylinder was mounted in a wind tunnel,
the arrangement being similar to the one used here (see the section
"Experimental Data"). Onhis plot of the streamlines at R = 53 the
downstreamspread of the vortex street is parabolic rather thsm linear.
It is possible to fit his results by a somewhatdifferent application
of Hooker's idea, using decaying vortex filaments.

Each vortex in the street is considered to behave like a single
vortex filament carried along by the fluid, its decay or diffusion being
the sameas if it were at rest. The decay of such a vortex is described
by a heat equation, whose solution is (reference 30, p. 592):

= r ( e_r2/4vt)
q 2-_r_l - (BIO)

where q is the tangential velocity at the distance r from the center

and at the time t. The circulation is F. This is essentially a vortex

with a "solid" core and potential outer flow Joined by a tra/Isition
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region in which the velocity has a maxlmumvalue.
is

q* = 0.72(r/2_r*)

and occurs at the radial distanc_

This maximum velocity

(B_)

r* : 2.24( )i/2 (BI2)

Here r* is defined as the vortex radius.

Thus the radius increases as tl/2 and the maximum velocity decreases
;

as t-1/2. In the vortex street, the time t is replaced by the downstream

distance x. Since the vortices move with the velocity U* rather than

Uo
Uo, the dimensionless time e = x is appropriate, where U* also

U* d

varies downstream (see the section "Downstream Vortex Spacing").

When a pattern of such vortices is superimposed on a uniform flow,

it is possible to calculate the velocity fluctuation at a point, because

of the pattern passing over it.

Now the following hypothesis is added. It is assumed that the

vortex radius r* is equal to the width h of the street. Then the

width of the street increases as xl/2.

A second result follows. The maximum velocity fluctuation (observed

by a hot-wlre, say) will occur on the line of vortex centers and will have

the amplitude

u* = I q. (BI3)
2

that is, the hot-wire encounters instantaneous velocities varying from

U* (because of vortex centers passing over it) to U* + q* (due to the

fields of vortices on the other side of the street). Relations (BII)

and (BI2) then give the downstream behavior of the maximum fluctuation

amplitude.

The results may be summarized as follows:

(a) Wake width h _ el/2.

(b) The maximum amplitude of fluctuation u* occurs on the line

of vortex centers (so there are two maximum points across the wake).
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(C) U* _ @-1/2.

(d)u* = 0.36(r/2 h).

A comparison of the above predictions was made with calculations

based on Kovasznay's measurements which include profiles of velocity

fluctuation amplitude (cf. fig. II) as well as the streamline plot.

The following comparisons were obtained, item by item:

(a') The time variatlon of h/d, determined from the vortex

centers on the streamline plot is shown in flgure 21. The parabola

h/d = 0.59(e - 6) I/z is shown for comparison.

(b') The llne of maximum velocity fluctuation lles slightly inside

the line of vortex centers and is fitted by h*/d = 0.53(e - 6) 1/2 .

(c') The time variation of u* is also plotted in figure 21.

(Actually Kovasznay's maximum root-mean-square values u' m are plotted,

but these should differ from u* only by a constant factor.) The curve

U'm/U o = 0.26(e - 6) -1/2 is shown for comparison. The points could be

fitted better, but the curve was chosen again to have the origin e = 6.

(d') A comparison with (d) may be made by estimating the strength

F of the vortices. Such a consideration, in fact, led to the present

model, for it was found that the magnitude of the observed velocity

fluctuations could be accounted for only by assuming that the radius

of the vortex core is about equal to the width of the street. This

observation had already been made by Fage and Johansen (reference 8),

for R _ 2 x 104 . If the free vortex layer is represented by a velocity

discontinuity U = U o to U = 0 then the circulation is Uo per unit

length and "the circulation" flows with the velocity Uo/2. On the

other hand, the rate at which circulation enters one side of the street

is nlF , where F is the circulation per vortex. 8 Therefore

F - U°2 - U°d

2n I 2S

For Kovasznay's example, S _ 0.13, so P _ 4Uod. Then, comparing

with (d), the maximum fluctuation in the initial part of the wake is

8The velocity at the outer edge of the layer is actually about l.SUo,

but experiments indicate that only about half the vorticity of the shear

layer goes into individual vortices. Therefore, the value Uod/2S is a

fair estimate.
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u*_ d
_ 0.2 = 0.2

U o

assuming h % d at this low Reynolds number. The largest value of

U'm/U o in Kovasznay's example is 0.14 at x/d = 7, corresponding to

u*/U o _ 2. The order of magnitude of this estimate is quite sensitive
to the size of the core relative to the width of the street; if the core

is assumed to be much smaller, the calculated velocity fluctuations are

much larger than those observed. Also, if the cores were very small

compared with the width of the wake, four peaks instead of two would be

observed in the profile of the velocity fluctuation amplitude.
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TABLE II

RING DIMENSIONS

d

Ring (cm) D ds D/d

1

2

3

0.168

.081

.079

1.59

.81

•40

o.o3o

.o18

.o18

9.5

i0.0

5.1

TABLE III

VALUES OF STROUKAL NUMBER FOR VARIOUS TEST

REYNOLDS NUMBERS

R s RD SO

89
96

lO3

128

153
182

215

3o2

366

455

0.051

.052

.052

.o57

.06o

.147

.189

.204

.21]

.212

45O

490
525

650

78O

0.26

.26S

.265

.29
•31
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Figure 2.- Amplitude distribution moments.
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Figure 9.- Plot of F against R (50 < R < 140). F = 0.212R - 4.5.
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Figure 14.- Downstream development of spectrum, d = 0.190 centimeter;

R = 500; n I = 440.
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Figure 15.- Downstream development of spectrum.
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